2,627 research outputs found

    Design, synthesis of 4-hydroxyl-α-cyanocinnmaic acid derived compounds and their applications in chiral recognition of amino acids by mass spectrometry

    Get PDF
    2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Modulation of NKT Cell Development by B7-CD28 Interaction: An Expanding Horizon for Costimulation

    Get PDF
    It has been demonstrated that the development of NKT cells requires CD1d. The contribution of costimulatory molecules in this process has not been studied. Here we show that in mice with targeted mutations of B7-1/2 and CD28, the TCRβ+α-Galcer/CD1d + (iVα14 NKT) subset is significantly reduced in the thymus, spleen and liver. This is mainly due to decreased cell proliferation; although increased cell death in the thymi of CD28-deficient mice was also observed. Moreover, in the B7-1/2- and CD28-deficient mice, we found a decreased percentage of the CD4−NK1.1+ subset and a correspondingly increased portion of the CD4+NK1.1− subset. In addition, the mice with a targeted mutation of either B7 or CD28 had a reduced susceptibility to Con A induced hepatitis, which is known to be mediated by NKT cells. Our results demonstrate that the development, maturation and function of NKT cell are modulated by the costimulatory pathway and thus expand the horizon of costimulation into NKT, which is widely viewed as a bridge between innate and adaptive immunity. As such, costimulation may modulate all major branches of cell-mediated immunity, including T cells, NK cells and NKT cells

    Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction

    Get PDF
    A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl-2, Br-2 and I-2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination during the ball-milling and subsequent workup processes. The newly-developed XGnPs can be well dispersed in various solvents, and hence are solution processable. Furthermore, XGnPs showed remarkable electrocatalytic activities toward oxygen reduction reaction (ORR) with a high selectivity, good tolerance to methanol crossover/CO poisoning effects, and excellent long-term cycle stability. First-principle density-functional calculations revealed that halogenated graphene edges could provide decent adsorption sites for oxygen molecules, in a good agreement with the experimental observations.open271

    Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde IV. The ALMA view of N113 and N159W in the LMC

    Get PDF
    We mapped the kinetic temperature structure of two massive star-forming regions, N113 and N159W, in the Large Magellanic Cloud (LMC). We have used ~1.′′6 (~0.4 pc) resolution measurements of the para-H2CO JKaKc = 303–202, 322–221, and 321–220 transitions near 218.5 GHz to constrain RADEX non local thermodynamic equilibrium models of the physical conditions. The gas kinetic temperatures derived from the para-H2CO line ratios 322–221/303–202 and 321–220/303–202 range from 28 to 105 K in N113 and 29 to 68 K in N159W. Distributions of the dense gas traced by para-H2CO agree with those of the 1.3 mm dust and Spitzer 8.0 μm emission, but they do not significantly correlate with the Hα emission. The high kinetic temperatures (Tkin ≳ 50 K) of the dense gas traced by para-H2CO appear to be correlated with the embedded infrared sources inside the clouds and/or young stellar objects in the N113 and N159W regions. The lower temperatures (Tkin < 50 K) were measured at the outskirts of the H2CO-bearing distributions of both N113 and N159W. It seems that the kinetic temperatures of the dense gas traced by para-H2CO are weakly affected by the external sources of the Hα emission. The non thermal velocity dispersions of para-H2CO are well correlated with the gas kinetic temperatures in the N113 region, implying that the higher kinetic temperature traced by para-H2CO is related to turbulence on a ~0.4 pc scale. The dense gas heating appears to be dominated by internal star formation activity, radiation, and/or turbulence. It seems that the mechanism heating the dense gas of the star-forming regions in the LMC is consistent with that in Galactic massive star-forming regions located in the Galactic plane

    Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury

    Get PDF
    Following spinal cord injury (SCI), semaphorin 3A (Sema3A) prevents axonal regeneration through binding to the neuropilin-1 (NRP-1)/PlexinA4 receptor complex. Here, we show that galectin-1 (Gal-1), an endogenous glycan-binding protein, selectively bound to the NRP-1/PlexinA4 receptor complex in injured neurons through a glycan-dependent mechanism, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. Although both Gal-1 and its monomeric variant contribute to de-activation of microglia, only high concentrations of wild-type Gal-1 (which co-exists in a monomer-dimer equilibrium) bind to the NRP-1/PlexinA4 receptor complex and promote axonal regeneration. Our results show that Gal-1, mainly in its dimeric form, promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A binding to NRP-1/PlexinA4 complex, supporting the use of this lectin for the treatment of SCI patients.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Pasquini, Juana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pasquini, Laura Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; Argentin

    On how data are partitioned in model development and evaluation: Confronting the elephant in the room to enhance model generalization

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: No data was used for the research described in the article.Models play a pivotal role in advancing our understanding of Earth's physical nature and environmental systems, aiding in their efficient planning and management. The accuracy and reliability of these models heavily rely on data, which are generally partitioned into subsets for model development and evaluation. Surprisingly, how this partitioning is done is often not justified, even though it determines what model we end up with, how we assess its performance and what decisions we make based on the resulting model outputs. In this study, we shed light on the paramount importance of meticulously considering data partitioning in the model development and evaluation process, and its significant impact on model generalization. We identify flaws in existing data-splitting approaches and propose a forward-looking strategy to effectively confront the “elephant in the room”, leading to improved model generalization capabilities.National Natural Science Foundation of ChinaAustralian Research Council (ARC
    corecore